Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Hazard Mater ; 455: 131587, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2309599

RESUMO

Discarded face masks from the global COVID-19 pandemic have contributed significantly to plastic pollution in surface water, whereas their potential as a reservoir for aquatic pollutants is not well understood. Herein, we conducted a field experiment along a human-impacted urban river, investigating the variations of antibiotic resistance genes (ARGs), pathogens, and water-borne contaminants in commonly-used face masks. Results showed that high-biomass biofilms formed on face masks selectively enriched more ARGs than stone biofilm (0.08-0.22 vs 0.07-0.15 copies/16 S rRNA gene copies) from bulk water, which mainly due to unique microbial communities, enhanced horizontal gene transfer, and selective pressure of accumulated contaminants based on redundancy analysis and variation partitioning analysis. Several human opportunistic pathogens (e.g., Acinetobacter, Escherichia-Shigella, Bacillus, and Klebsiella), which are considered potential ARG carriers, were also greatly concentrated in face-mask biofilms, imposing a potential threat to aquatic ecological environment and human health. Moreover, wastewater treatment plant effluents, as an important source of pollutants to urban rivers, further aggravated the abundances of ARGs and opportunistic pathogens in face-mask biofilms. Our findings demonstrated that discarded face masks provide a hotspot for the proliferation and spread of ARGs and pathogens in urban water, highlighting the urgent requirement for implementing stricter regulations in face mask disposal.


Assuntos
COVID-19 , Genes Bacterianos , Humanos , Máscaras , Rios , Antibacterianos/farmacologia , Antibacterianos/análise , Pandemias , Água , Biofilmes
2.
Sci Total Environ ; 887: 163781, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2309588

RESUMO

During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.


Assuntos
COVID-19 , Compostos de Amônio Quaternário , Humanos , Cloreto de Amônio , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Genes Bacterianos , Plasmídeos
3.
Sci Total Environ ; 882: 163598, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2296671

RESUMO

During COVID-19 pandemic, chemicals from excessive consumption of pharmaceuticals and disinfectants i.e., antibiotics, quaternary ammonium compounds (QACs), and trihalomethanes (THMs), flowed into the urban environment, imposing unprecedented selective pressure to antimicrobial resistance (AMR). To decipher the obscure character pandemic-related chemicals portrayed in altering environmental AMR, 40 environmental samples covering water and soil matrix from surroundings of Wuhan designated hospitals were collected on March 2020 and June 2020. Chemical concentrations and antibiotic resistance gene (ARG) profiles were revealed by ultra-high-performance liquid chromatography-tandem mass spectrometry and metagenomics. Selective pressure from pandemic-related chemicals ascended by 1.4-5.8 times in March 2020 and then declined to normal level of pre-pandemic period in June 2020. Correspondingly, the relative abundance of ARGs under increasing selective pressure was 20.1 times that under normal selective pressure. Moreover, effect from QACs and THMs in aggravating the prevalence of AMR was elaborated by null model, variation partition and co-occurrence network analyses. Pandemic-related chemicals, of which QACs and THMs respectively displayed close interaction with efflux pump genes and mobile genetic elements, contributed >50 % in shaping ARG profile. QACs bolstered the cross resistance effectuated by qacEΔ1 and cmeB to 3.0 times higher while THMs boosted horizon ARG transfer by 7.9 times for initiating microbial response to oxidative stress. Under ascending selective pressure, qepA encoding quinolone efflux pump and oxa-20 encoding ß-lactamases were identified as priority ARGs with potential human health risk. Collectively, this research validated the synergistic effect of QACs and THMs in exacerbating environmental AMR, appealing for the rational usage of disinfectants and the attention for environmental microbes in one-health perspective.


Assuntos
COVID-19 , Desinfetantes , Humanos , Antibacterianos/farmacologia , Desinfecção , Pandemias , Prevalência , Farmacorresistência Bacteriana/genética , Desinfetantes/farmacologia , Compostos de Amônio Quaternário , Genes Bacterianos
4.
J Hazard Mater ; 453: 131428, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2306613

RESUMO

The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.


Assuntos
COVID-19 , Desinfetantes , Humanos , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Genes Bacterianos , Pandemias , Resistência Microbiana a Medicamentos/genética , Guanidinas , Transferência Genética Horizontal , Plasmídeos/genética
5.
Ecotoxicol Environ Saf ; 253: 114678, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2264688

RESUMO

The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.


Assuntos
COVID-19 , Desinfetantes , Humanos , Antibacterianos/farmacologia , Escherichia coli/genética , Desinfetantes/toxicidade , Farmacorresistência Bacteriana/genética , Plasmídeos , Genes Bacterianos , Bactérias , Compostos de Benzalcônio/farmacologia
6.
J Hazard Mater ; 449: 131038, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2239747

RESUMO

Face masks (FMs) are essential to limit the spread of the coronavirus during pandemic, a considerable of which are accumulated on the coast. However, limited is known about the microbial profile in the biofilm of the face masks (so-called plastisphere) and the impacts of face masks on the surrounding environments. We herein performed face mask exposures to coastal sediments and characterized the microbial community and the antibiotic resistome. We detected 64 antibiotic-resistance genes (ARGs) and 12 mobile gene elements (MGEs) in the plastisphere. Significant enrichments were found in the relative abundance of total ARGs in the plastisphere compared to the sediments. In detail, the relative abundance of tetracycline, multidrug, macrolide-lincosamide-streptogramin B (MLSB), and phenicol-resistant genes had increased by 5-10 times. Moreover, the relative abundance of specific hydrocarbonoclastic bacteria (e.g., Polycyclovorans sp.), pathogens (e.g., Pseudomonas oleovorans), and total MGEs significantly increased in the sediments after face mask exposure, which was congruent with the alteration of pH value and metal concentrations in the microcosms. Our study demonstrated the negative impacts of FMs on coastal environments regardless of the profiles of ARGs or pathogens. These findings improved the understanding of the ecological risks of face masks and underlined the importance of beach cleaning.


Assuntos
Antibacterianos , Microbiota , Genes Bacterianos , Máscaras , Bactérias/genética
7.
Environ Int ; 172: 107784, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2238936

RESUMO

Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic.


Assuntos
COVID-19 , Microbiota , Humanos , Genes Bacterianos , Pandemias , Antibacterianos/farmacologia , Teorema de Bayes , Bactérias/genética
8.
Sci Total Environ ; 871: 162035, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2236822

RESUMO

Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance.


Assuntos
COVID-19 , Desinfetantes , Humanos , Pandemias , Genes Bacterianos , Aerossóis e Gotículas Respiratórios , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Antibacterianos/farmacologia , Desinfetantes/farmacologia
9.
Sci Total Environ ; 867: 161527, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2183117

RESUMO

Disinfectants are routinely used in human environments to control and prevent the transmission of microbial disease, and this is particularly true during the current COVID-19 crisis. However, it remains unclear whether the increased disinfectant loadings to wastewater treatment plants facilitate the dissemination of antibiotic resistance genes (ARGs) in sewage sludge microbiomes. Here, we investigated the impacts of benzalkonium chlorides (BACs), widely used disinfectants, on ARGs profiles and microbial community structures in sewage sludge by using high-throughput quantitative PCR and Illumina sequencing. A total of 147 unique ARGs and 39 mobile genetic elements (MGEs) were detected in all sewage sludge samples. Our results show that exposure to BACs disinfectants at environmentally relevant concentrations significantly promotes both the diversity and absolute abundance of ARGs in sludge microbiomes, indicating the co-selection of ARGs by BACs disinfectants. The enrichment of ARGs abundance varied from 2.15-fold to 3.63-fold compared to controls. In addition, BACs exposure significantly alters bacterial and protistan communities, resulting in dysbiosis of the sludge microbiota. The Mantel test and Procrustes analysis confirm that bacterial communities are significantly correlated with ARGs profiles under BACs treatments. The structural equation model explains 83.8 % of the total ARGs variation and further illustrates that the absolute abundance of MGEs exerts greater impacts on the variation of absolute abundance of ARGs than microbial communities under BACs exposure, suggesting BACs may promote antibiotic resistance by enhancing the horizontal gene transfer of ARGs across sludge microbiomes. Collectively, our results provide new insights into the proliferation of antibiotic resistance through disinfectant usage during the pandemic and highlight the necessity to minimize the environmental release of disinfectants into the non-target environment for combating antibiotic resistance.


Assuntos
COVID-19 , Desinfetantes , Microbiota , Humanos , Esgotos/microbiologia , Compostos de Benzalcônio/farmacologia , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
10.
Environ Res ; 219: 115139, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2165280

RESUMO

The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and < 0.002), respectively. FC samples were found to acquire more pathogenic microorganisms than FA and FV samples. Paenibacillus and unclassified Bacilli genera were shared among three groups of samples, meanwhile, antibiotic-resistant bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of blaTEM-1 and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.


Assuntos
COVID-19 , Microbiota , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , beta-Lactamas , Genes Bacterianos , RNA Ribossômico 16S/genética , Pandemias , COVID-19/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
11.
Microb Biotechnol ; 15(9): 2464-2475, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2019054

RESUMO

Poultry meat production is one of the most important agri-food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food-borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non-sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM , blaCTx-M-1 , sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG-carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.


Assuntos
Bacteriófagos , Animais , Antibacterianos/farmacologia , Bactérias/genética , Bacteriófagos/genética , Galinhas , Resistência Microbiana a Medicamentos/genética , Escherichia coli , Genes Bacterianos , Fígado
12.
Environ Sci Technol ; 56(21): 15007-15018, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1972504

RESUMO

Since the COVID-19 pandemic started, there has been much speculation about how COVID-19 and antimicrobial resistance may be interconnected. In this study, untreated wastewater was sampled from Hospital A designated to treat COVID-19 patients during the first wave of the COVID-19 pandemic alongside Hospital B that did not receive any COVID-19 patients. Metagenomics was used to determine the relative abundance and mobile potential of antibiotic resistant genes (ARGs), prior to determining the correlation of ARGs with time/incidence of COVID-19. Our findings showed that ARGs resistant to macrolides, sulfonamides, and tetracyclines were positively correlated with time in Hospital A but not in Hospital B. Likewise, minor extended spectrum beta-lactamases (ESBLs) and carbapenemases of classes B and D were positively correlated with time, suggesting the selection of rare and/or carbapenem-resistant genes in Hospital A. Non-carbapenemase blaVEB also positively correlated with both time and intI1 and was copresent with other ARGs including carbapenem-resistant genes in 6 metagenome-assembled genomes (MAGs). This study highlighted concerns related to the dissemination of antimicrobial resistance (AMR) during the COVID-19 pandemic that may arise from antibiotic use and untreated hospital wastewater.


Assuntos
Antibacterianos , COVID-19 , Humanos , Antibacterianos/farmacologia , Águas Residuárias , Pandemias , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Hospitais
13.
J Water Health ; 20(8): 1157-1170, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1928362

RESUMO

The COVID-19 pandemic has brought new momentum to 'wastewater-based epidemiology' (WBE). This approach can be applied to monitor the levels of antibiotic-resistant genes (ARGs), which in terms are used to make inferences about the burden of antimicrobial resistance (AMR) in human settlements. However, there is still little information about temporal variability in ARG levels measured in wastewater streams and how these influence the inferences made about the occurrence of AMR in communities. The goal of this study was hence to gain insights into the variability in ARG levels measured in the influent and effluent of two wastewater treatment plants in The Netherlands and link these to levels of antibiotic residues measured in the same samples. Eleven antibiotics were detected, together with all selected ARGs, except for VanB. Among the measured antibiotics, significant positive correlations (p > 0.70) with the corresponding resistance genes and some non-corresponding ARGs were found. Mass loads varied up to a factor of 35 between days and in concomitance with rainfall. Adequate sampling schemes need to be designed to ensure that conclusions are drawn from valid and representative data. Additionally, we advocate for the use of mass loads to interpret levels of AMR measured in wastewater.


Assuntos
COVID-19 , Purificação da Água , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Pandemias , Eliminação de Resíduos Líquidos , Águas Residuárias/química
14.
Environ Toxicol Chem ; 41(3): 687-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1706213

RESUMO

River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.


Assuntos
COVID-19 , Rios , Antibacterianos/análise , Antibacterianos/farmacologia , China , Farmacorresistência Bacteriana/genética , Ecossistema , Genes Bacterianos , Humanos , Rios/química , SARS-CoV-2
15.
J Water Health ; 19(6): 895-906, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1606294

RESUMO

The continuous introduction of cleaning products containing benzalkonium chloride (BAC) from household discharges can mold the microbial communities in wastewater treatment plants (WWTPs) in a way still poorly understood. In this study, we performed an in vitro exposure of activated sludge from a WWTP in Costa Rica to BAC, quantified the changes in intI1, sul2, and qacE/qacEΔ1 gene profiles, and determined alterations in the bacterial community composition. The analysis of the qPCR data revealed elevated charges of antibiotic resistance genes in the microbial community; after BAC's exposure, a significant increase in the qacE/qacEΔ1 gene, which is related to ammonium quaternary resistance, was observed. The 16S rRNA gene sequences' analysis showed pronounced variations in the structure of the bacterial communities, including reduction of the alpha diversity values and an increase of the relative abundance of Alphaproteobacteria, particularly of Rhodospseudomonas and Rhodobacter. We confirmed that the microbial communities presented high resilience to BAC at the mg/mL concentration, probably due to constant exposure to this pollutant. They also presented antibiotic resistance-related genes with similar mechanisms to tolerate this substance. These mechanisms should be explored more thoroughly, especially in the context of high use of disinfectant.


Assuntos
Compostos de Benzalcônio , Esgotos , Antibacterianos/farmacologia , Bactérias/genética , Compostos de Benzalcônio/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias
16.
Int J Hyg Environ Health ; 240: 113882, 2022 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1561070

RESUMO

As the COVID-19 pandemic spread globally, the consumption of antibiotics increased. However, no studies exist evaluating the effect of antibiotics use on the antibiotic resistance of intestinal flora in COVID-19 patients during the pandemic. To explore this issue, we collected 15 metagenomic data of fecal samples from healthy controls (HCs) with no use history of antibiotics, 23 metagenomic data of fecal samples from COVID-19 patients who received empirical antibiotics [COVID-19 (abx+)], 18 metagenomic data of fecal samples from antibiotics-naïve COVID-19 patients [COVID-19 (abx-)], and six metagenomic data of fecal samples from patients with community-acquired pneumonia [PC (abx+)] from the Sequence Read Archive database. A total of 513 antibiotic-resistant gene (ARG) subtypes of 18 ARG types were found. Antibiotic treatment resulted in a significant increase in the abundance of ARGs in intestinal flora of COVID-19 patients and markedly altered the composition of ARG profiles. Grouped comparisons of pairs of Bray-Curtis dissimilarity values demonstrated that the dissimilarity of the HC versus the COVID-19 (abx+) group was significantly higher than the dissimilarity of the HC versus the COVID-19 (abx-) group. The mexF, mexD, OXA_209, major facilitator superfamily transporter, and EmrB_QacA family major facilitator transporter genes were the discriminative ARG subtypes for the COVID-19 (abx+) group. IS621, qacEdelta, transposase, and ISCR were significantly increased in COVID-19 (abx+) group; they greatly contributed toward explaining variation in the relative abundance of ARG types. Overall, our data provide important insights into the effect of antibiotics use on the antibiotic resistance of COVID-19 patients during the COVID-19 epidemic.


Assuntos
COVID-19 , Antibacterianos , Genes Bacterianos , Humanos , Pandemias , SARS-CoV-2
17.
Bioresour Technol ; 347: 126429, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1536445

RESUMO

Triclocarban (TCC) is in great market demand especially after the outbreak of COVID-19 pandemic, becoming an emerging pollutant. However, the impacts of TCC on the performance of nitrifying granular sludge system and the occurrence of antibiotic resistance genes (ARGs) were still unknown. This work explored the impacts of different concentrations of TCC on nitrifying granular sludge. Results showed that TCC suppressed the activities of ammonia-oxidizing microorganisms and decreased the abundance of Nitrospira. Adsorption was the main way for the removal of TCC and the biodegradation efficiency of TCC increased to 28.00% under 19.70 mg/L TCC addition. TCC enriched the ARGs and promoted the risks of their transferring in microorganisms. Pseudomonas might not only have strong resistance to TCC, but also propagate ARGs. The removal process of TCC and bacterial communities were important factors to promote the spread of ARGs. Thus, the existence of TCC presented a great environmental risk.


Assuntos
COVID-19 , Microbiota , Antibacterianos/farmacologia , Carbanilidas , Resistência Microbiana a Medicamentos , Genes Bacterianos/genética , Humanos , Pandemias , SARS-CoV-2 , Esgotos
18.
J Hazard Mater ; 425: 127774, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1517334

RESUMO

The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.


Assuntos
Antibacterianos , COVID-19 , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Máscaras , Pandemias , SARS-CoV-2
19.
Sci Total Environ ; 788: 147873, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1240610

RESUMO

Although river restoration has been increasingly implemented to restore water quality in ecosystems, its effect on the removal of emerging pollutant antibiotics, and their resultant influence on microbial community structure and functions in river water is still unclear. This study investigated the changes of antibiotics, antibiotic resistant genes (ARGs), microbial communities, and their spatial distributions in a megacity river before and after river restoration. Results indicated that although the restoration activities including riverbed dredging, riverbank hardening, sewage and storm water separation and re-pipelining improved water quality such as by decreasing total phosphorus (TP) content from 4.60 ± 6.38 mg/L in 2018 to 0.98 ± 0.44 mg/L in 2020, the antibiotic concentrations in river water increased. Total antibiotic concentrations in the water samples were higher in 2020 (506.89-6952.50 ng/L) than those in 2018 (137.93-1751.51 ng/L), likely caused by increased usage of antibiotics in 2020 for COVID-19 treatment. The spatial distributions of antibiotics were less varied likely as a result of less retardation and fast mixing during antibiotic transport. The result also found that the abundance of Actinobacteria and Proteobacteria, and their correlations with ARGs increased. The spatial distributions of ARGs and microbial communities became less varied in the river water, consistent with the antibiotic variations before and after river restoration. Physicochemical changes such as decreased TP and dissolved organic carbon content may also be a factor. The results indicated that the current river restoration efforts were not effective in removing antibiotics, and implied that further studies are needed to investigate their subsequent transformation and transport, and to assess their risks to the health of ecosystems.


Assuntos
Tratamento Farmacológico da COVID-19 , Microbiota , Antibacterianos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Rios , SARS-CoV-2
20.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1195824

RESUMO

New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.IMPORTANCE Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunization with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Genes Bacterianos , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA